Análisis de recurrencia en la actividad locomotora en cochinillas en función del nivel de humedad

Autores

Resumo

El presente estudio se enfoca en el uso del análisis cuantitativo de recurrencia para analizar la actividad locomotora en cochinillas en función del nivel de humedad en el entorno. Se expuso a tres sujetos a cuatro condiciones en las que varió el nivel de humedad, de 32,9% a 94,9%. Se videograbó el desplazamiento de los animales en cada condición de humedad. Mediante el uso de software para el seguimiento de trayectorias en insectos (ID tracker) y algoritmos programados en lenguaje R se obtuvieron registros y representaciones de las rutas de desplazamiento de las cochinillas como coordenadas XY. Los resultados mostraron diferencias en el nivel de actividad, en términos de distancia total recorrida y en la variación de las rutas de desplazamiento en función del nivel de humedad, siendo la condición de humedad al 50% la que controló mayor actividad y mayor regularidad en los patrones de desplazamiento. Los análisis cuantitativos de recurrencia, así como las gráficas de recurrencia correspondientes, mostraron ser útiles para la representación y análisis de la orientación en cochinillas bajo diferentes condiciones de nivel de humedad.

Palavras-chave:

análisis de recurrencia, dinámica no-lineal, locomoción, ortokinesis, cochinillas

Referências

Ashby, W. R. (1960). Design for a brain. The origin of adaptive behavior (2nd edition). New York, New York: Wiley.

Bakeman, R. & Quera, V. (2011). Sequential analysis and observational methods for the behavioral sciences. Cambridge, United Kingdom: Cambridge University Press.

Brown, R. & Herrnstein, R. J. (1975). Psychology. Boston, Massachusetts: Little & Brown.

Dell, A. I., Bender, J. A., Branson, K., Couzin, I. D., Polavieja, G. G., Noldus, L. P., . . . Brose, U. (2014). Automated image-based tracking and its application in ecology. Trends in Ecology & Evolution, 29(7), 417-428. https://doi.org/10.1016/j.tree.2014.05.004

Di Narzo, A. & Di Narzo, F. (2019). tseriesChaos: Analysis of nonlinear time series. R package version 0.1-13.1. Recuperado de https://bit.ly/3cEkJZe

Eckmann, J., Kamphorst, S. O., & Ruelle, D. (1987). Recurrence plots of dynamical systems. Europhysics Letters (EPL), 4(9), 973-977. https://doi.org/10.1209/0295-5075/4/9/004

Fraenkel, G. & Gunn, D. (1961). The orientation of animals. Dover Edition. New York, New York: Dover.

Garcia, C. A. (2021). nonlinearTseries: Nonlinear time series analysis. R package version 0.2.11. Recuperado de https://bit.ly/3cKxPE8

Gleick, J. (2015). Chaos making a new science. London, United Kingdom: The Folio Society.

Guastello, S. J. & Gregson, R. A. (2011). Nonlinear dynamical systems analysis for the behavioral sciences using real data. Boca Raton, Florida: CRC Press.

Guastello, S. J., Koopmans, M., & Pincus, D. (2013). Chaos and complexity in psychology: The theory of nonlinear dynamical systems. Cambridge, United Kingdom: Cambridge University Press.

Gunn, D. L. (1937). The humidity reactions of the wood-louse, porcellio scaber (latreille). Journal of Experimental Biology, 14(2), 178-186. https://doi.org/10.1242/jeb.14.2.178

Gunn, D. L. & Kennedy, J. S. (1936). Apparatus for investigating the reactions of land arthropods to humidity. Journal of Experimental Biology, 13(4), 450-459. https://doi.org/10.1242/jeb.13.4.450

Gunn, D., Kennedy, J., & Pielou, D. (1937). Classification of taxes and kineses. Nature, 140, 1064. https://doi.org/10.1038/1401064a0

Killeen, P. R. (1989). Behavior as a trajectory through a field of attractors. In J. R. Brink & C. R. Haden (Eds.), The computer 6 the brain: Perspectives on human and artificial intelligence (pp. 53-82). Amsterdam, Netherlands: Elsevier.

Koenker, R. (2021). SparseM: Sparse Linear Algebra. R package version 1.81. Recuperado de https://bit.ly/3vi6MGK

Loeb, J. (1918). Forced movements, tropisms, and animal conduct. Philadelphia, Pennsylvania: J. B. Lippincott Company.

Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20(2), 130-141. https://doi.org/fwwt5q

Marwan, N., Romano, C.M., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics Reports, 438(5-6), 237-329. https://doi.org/10.1016/j.physrep.2006.11.001

Neves, F. M., Viana, R. L., & Pie, M. R. (2017). Recurrence analysis of ant activity patterns. Plos One, 12(10). https://doi.org/10.1371/journal.pone.0185968

Palacios, H. (2016). Medidas molares y análisis no lineal de datos. (Tesis Doctoral). Universidad Veracruzana, Veracruz, México.

Pérez-Escudero, A., Vicente-Page, J., Hinz, R. C., Arganda, S., & Polavieja, G. G. (2014). IdTracker: Tracking individuals in a group by automatic identification of unmarked animals. Nature Methods, 11(7), 743-748. https://doi.org/10.1038/nmeth.2994

Potter, M. F. (s. f.). Sowbugs and pillbugs. ENTFACT-439. Cooperative extension service, University of Kentucky, College of agriculture, Kentucky. Recuperado de https://bit.ly/3zvCJxZ

R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Recuperado de https://www.R-project.org/

Ribes Iñesta, E. (2018). El estudio científico de la conducta individual. Una introducción a la teoría de la psicología. Ciudad de México, México: Manual Moderno.

Ruiz, J. A., Guerrero-Sánchez, C. G., Gutiérrez-Moreno, I. A., & Tamayo, J. (2022). Análisis de dimensiones continuas del comportamiento: un tutorial en R. Revista Mexicana de Análisis de la Conducta, 48.

Scott, A. W. (2007). The Nonlinear Universe. Chaos, emergence, life. Berlin, Germany: Springer.

Staddon, J. E. R. (2016). Adaptive behavior and learning (2nd edition). Cambridge, United Kingdom: Cambridge University Press.

Strogatz, S. H. (2018). Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering. Boca Raton, Florida: CRC Press, Taylor & Francis Group.

Sutton, S., Harding, P., & Burn, D. (1972). Woodlice. London, United Kingdom: Ginn.

Takens, F. (1981). Detecting strange attractors in turbulence. Lecture Notes in Mathematics Dynamical Systems and Turbulence, Warwick 1980, 366-381. https://doi.org/10.1007/bfb0091924

Webber, J. C., Ioana, C., & Marwan, N. (2016). Recurrence plots and their quantifications: Expanding horizons. Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-29922-8

Webber, C. & Zbilut, J. (2005). Recurrence quantification analysis of nonlinear dynamical systems. In M. A. Riley & G. C. Van Orden (Eds.), Tutorials in contemporary nonlinear methods for the behavioral sciences (pp. 26-94). Recuperado de https://bit.ly/3cBsSgZ

Zbilut, J. P., & Webber, C. L. (2007). Recurrence quantification analysis: Introduction and historical context. International Journal of Bifurcation and Chaos, 17(10), 3477-3481. https://doi.org/10.1142/s0218127407019238